Shifting and scaling adaptation to dynamic stimuli in somatosensory cortex.

نویسندگان

  • J A Garcia-Lazaro
  • S S M Ho
  • A Nair
  • J W H Schnupp
چکیده

Recent reports have shown that responses of midbrain neurons in the guinea pig rapidly shift the dynamic range of their responses to track changes in the statistics of ongoing sound-level distributions. This results in an increased coding accuracy for the most commonly occurring stimulus intensities. To investigate whether this type of adaptation might also be found in other sensory modalities, we characterized the intensity-response functions of neurons in rat primary somatosensory cortex (S1) to continuous sinusoidal vibration of the whiskers with amplitudes that were changed every 40 ms. Vibration amplitudes were selected randomly such that there was an 80% chance for the amplitude to be drawn from a relatively narrow 'high-probability region' (HPR). Stimulus mean and variance were then manipulated by shifting or widening the HPR. We found that rat S1 neurons adapt to shifts of the HPR mainly by shifting their thresholds, and to changes in HPR width by changing the slope of their rate-level curves. Using realistic single-neuron models, we go on to show that after-hyperpolarizing currents, such as those carried by K(Ca)(2+) channels, may be responsible for the threshold shifts, but not the slope changes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

Neural encoding of saltatory pneumotactile velocity in human glabrous hand

Neurons in the somatosensory cortex are exquisitely sensitive to mechanical stimulation of the skin surface. The location, velocity, direction, and adaptation of tactile stimuli on the skin's surface are discriminable features of somatosensory processing, however the representation and processing of dynamic tactile arrays in the human somatosensory cortex are poorly understood. The principal ai...

متن کامل

Thalamocortical connections of the primary somatosensory cortex

  Although each subdivision of primary somatosensory cortex (SI) receives dense input from the thalamus, but the exact location and type of information that the fibers convey have not been identified yet. In the present study, the exact source of thalamocortical fibers to areas 2 and 3b was investigated using tract-tracing techniques. Following injection of tracer into area 3b, labeled neurons ...

متن کامل

Title: BOLD adaptation in vibrotactile stimulation: Neuronal networks involved in frequency discrimination

The present functional magnetic resonance imaging (fMRI) study investigated human brain regions subserving the discrimination of vibrotactile frequency. An event-related adaptation paradigm (Grill-Spector et al. 1999) was used in which blood-oxygen-level-dependent (BOLD) responses are lower to same compared to different pairs of stimuli (BOLD adaptation). This adaptation effect serves as an ind...

متن کامل

Depression at Thalamocortical Synapses The Key for Cortical Neuronal Adaptation?

Neuronal adaptation to repetitive sensory stimuli is ubiquitous in the mammalian cortex. Despite its prevalence, the cellular mechanisms underlying this basic physiological property remain a matter of dispute. In this issue of Neuron, Chung et al. provide conclusive evidence that depression of thalamocortical synapses may play a significant role in the expression of neuronal adaptation in the r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 26 8  شماره 

صفحات  -

تاریخ انتشار 2007